Search About RLL About Mattick About Supplement Add to Supplement PDF file providers Help

Full record view

Marks, J.A./ Pett-Ridge, J.C./ Perakis, S.S./ Allen, J.L./ McCune, B. 2015: Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium. - Ecosphere 6(9): 155. [RLL List # 240 / Rec.# 36613]
Keywords: lichen growth/ Lobaria pulmonaria/ molybdenum/ nitrogen/ nitrogen fixation/ Pacific Northwest/ transplant experiment/ vanadium
Abstract: Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient limitation and N fixation.
– doi:10.1890/ES15-00140.1

URL: http://www.esajournals.org/doi/abs/10.1890/ES15-00140.1

[Email correction]


Upload PDF file to the RLL web site

If you have a PDF file of this RLL/Mattic record, and there are no copyright problems involved, you may upload the file to the RLL/Mattick site. The PDF file will be automatically linked to the paper, and available for download by everyone. Only one PDF file can be linked to a paper, any previous link will be lost.

PDF file::
NB! Legal characters: a-z, A-Z, 0-9, hyphen, underscore, dot (i.e. no diacritics, ampersand, space, etc.).

  


Upload URL to PDF file or web site

Alternatively, you can link this RLL/Mattick record to a PDF file or web page placed somewhere else on the web. Again, only a single link can exist for each record; any previous link will be lost.

Copy and paste the URL you wish to link to this record: